Cooperative/Collaborative Learning in an Interior Architectural Program

Porntip Ruengtam

Faculty of Architecture Urban Design and Creative Arts, Mahasarakham University, Thailand

rtip2004ster@gmail.com

Abstract

This research presented a model of cooperative/collaborative learning technique which leads to learning efficiency of students continued from a previous research (Porntip, 2012). Objectives were to study and find out patterns of study groups of a classroom case study that would have effects on the student efficiency. Formulating the model and data analysis, the researcher used Structural Equation Modeling for explaining the effects on the efficiency of a group of students. A theoretical subject case study of the Interior Architecture Program in the Faculty of Architecture, Mahasarakham University was used in this research.

Keywords: Cooperative/Collaborative Learning Technique; Interior Architecture; Group Study

eISSN 2514-7528 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/jabs.v3i9.296
1.0 Introduction
Much of architectural education is concerned with developing students in order for them to become well-rounded, competent and imaginative designers of buildings and the spaces between them (Andrew, 2005). Teaching-learning methods in theoretical subjects of interior architectures in academic institutions are focused on transferring the theories to students for integration with other subjects, especially design subjects. There are many problems in the learning process in the classrooms of the theoretical subjects. These causes lead to a shortage of student concentration (boring) in the classes. Therefore by using collaborative/collaborative learning technique is a direction to develop the teachings-learning to be higher in the efficiency of the students. In the previous research (Learning Efficiency in Theoretical Subjects of Interior Architecture by Cooperative/ Collaborative Learning Technique by Porntip, 2012), the researcher found that responsibility and past academic performance of students cooperated with organized teaching-learning by an instructor, provided teaching facilities and physical environment within the classroom where supported to cooperative/collaborative learning technique would have a positive effect on student efficiency. Moreover, by the researcher’s teaching experiences the researcher believed that arranging study groups by mixing students based on past academic performance of the students would have more support to higher student efficiency especially students who have low past academic performance because they talked and shared their knowledge and experiences with each other during the group activities. This issue leads to a question that how could we arrange the study groups or patterns what would have the most student efficiency. This research presented a model of the cooperative/collaborative learning technique which confirmed how the technique affecting student efficiency in a theoretical subject of an interior architecture program by using Structural Equation Modeling. The main objectives of this research were studying factors and its measurement of the student characteristics, cooperative/collaborative learning technique, and student efficiency in the theoretical subject case study. The scope of this research covered a study of student efficiency by using cooperative/collaborative learning technique in the case study. The subject case study was “interior architecture design concept and criteria 2 (CC2)” for 2nd-year students of interior architecture program in Faculty of Architecture Urban Design and Creative Art, Mahasarakham University, Thailand. The research took the form of a longitudinal study carried out over a period of one semester.

2.0 Literature Review
In 1956, “Bloom's Taxonomy” was created under the leadership of educational psychologist Dr. Benjamin Bloom in order to promote higher forms of thinking in education, such as analyzing and evaluating, rather than just remembering facts (rote learning). “The Bloom’s Taxonomy” identified three domains of educational activities or learning (Bloom, 1956) included:

• Cognitive, mental skills (Knowledge)
• Affective, growth in feelings or emotional areas (Attitude or self)
• Psychomotor, manual or physical skills (Skills)…
Instructors often refer to these three categories as KSA (Knowledge, Skills, and Attitude). This taxonomy of learning behaviors can be thought of as “the goals of the learning process”. That is after a learning episode, the students should have acquired new skills, knowledge, and/or attitudes (Bloom, 1956).

Carroll (1974) presented a research related to five factors of successful teaching-learning management including (1) learner’s aptitude, (2) learner’s intelligence, (3) learner’s perseverance, (4) quality of instruction, and (5) learning opportunities. The first three factors related to the learners themselves while the factor four and five related to teaching-learning managements and processes. Delors (1998) stated that learning objectives of the learners for a new decade are learning to know, learning to do, learning to live together, and learning to be.

Marjan and Seyed (2011) stated that “collaborative” learning is an educational approach to teaching and learning that involves groups of learners working together to solve a problem, complete a task, or create a product. “Cooperative learning” is viewed as a tool for preparing students to work in teams as required in various employment settings, in the home, and in the community when there is a need to combine energies and work towards a common goal (Doymus, 2007). Burcin et. al., (2012) stated “cooperative learning” is a learning approach that, they are helping each other learn about an academic subject, creating small mixed groups of students in the classroom in accordance with a common purpose and the groups. “The learning together method” is a technique developed by D.W. Johnson and R.T. Johnson. The most important features of this technique are the existence of the group goal and sharing the opinion and materials, a division of labour and the group reward. During the first applications to put out a single product working in groups, sharing ideas and materials, asking each other their questions before the teacher has supplied to be rewarded (Burcin et. al., 2012). In the teaching-learning process of an architectural program, the cooperative/collaborative learning technique might be used in the study process for talking and sharing their knowledge and experiences with others during the group activities of students and an instructor.

Longman Dictionary (2013) recorded “characteristics” is a quality or feature of something or someone that is typical of them and easy to recognize. Characteristic is a distinguishing feature or attribute of an item, person, phenomenon, etc., usually divided into three categories; physical, functional, and operational. Students approach learning tasks with various aptitudes and prior experiences. The aptitudes include general abilities, task-specific skills, interests, attitudes, and personality characteristics (Cronbach and Snow, 1977). Schunk (1985) stated that students also differ in their prior educational experiences, such as the number of schools attended, types of teachers they have had, and the amount of time spent on various subjects. It should be noted that aptitudes and prior experiences are interdependent. “Student characteristic” in the previous research by Porntip (2012) could be measured by two measurement variables included past academic performance (GPA or previous relate subjects) and student responsibility score.

In the Wiki-Based Encyclopedia (2013) recorded “efficiency” in general describes the extent to which time, effort or cost is well used for the intended task or purpose. It is often used for the specific purpose of relaying the capability of a specific application of effort to
produce a specific outcome effectively with a minimum amount or quantity of waste, expense, or unnecessary effort. Efficiency has widely varying meanings in different disciplines. Efficiency can be expressed as a result as a percentage of what ideally could be expected, hence with 100% as an ideal case (Wikipedia, 2013). Porntip (2013) presented “student efficiency Model” in a theoretical subject of an interior architecture program could be measured by two measurement variables included total score and final score of students in the subject.

The Theoretical Subject: “interior architecture design concept and criteria 2” (CC2) is a required subject in Bachelor of Architecture (B Arch) Program in Interior Architecture, Faculty of Architecture Urban and Creative Arts, Mahasarakham University. Contents of the subject are controlled by the Architect Council of Thailand (ACT). CC2 is a continued subject from interior architecture design concept and criteria 1 (CC1), which means CC1 is the prerequisite subject of CC2.

Structural Equation Modeling (SEM) is a multivariable statistics technique which seeks to explain the relationships between multiple variables. The SEM uses various types of model to understand the relationships between observed variables and latent variables. Researchers can apply SEM for quantitative test on their hypothesis model. Moreover, it is provided how sets of variables define constructs and how these constructs are related to each other (Schumacker and Lomax, 2010). The hypothesized model can be tested statistically in a simultaneous analysis of the consistency of the collected data.

After evaluation of the literature mentioned above and the previous research (Porntip, 2012), this research proposed a conceptual model. The model consisted of three interrelated constructs or factors, which are student characteristic, cooperative/collaborative learning technique, and student efficiency. All the three constructs of the model, as well as the hypotheses related to these constructs, were described below (Figure 1).

Based on the above literature, the research hypotheses were formulated as follows:

H1: Student characteristic has a direct positive effect on student efficiency.

H2: Student characteristic has a direct positive effect on cooperative/collaborative learning technique.

H3: Cooperative/collaborative learning technique has a direct positive effect on student efficiency.

![Figure 1: Conceptual Research Model](attachment:figure1.png)
3.0 Methodology
The study was carried out from forty-five students who registered in the subject (CC2) for the 2nd year students. The research included five main steps: formulating conceptual research framework and hypotheses, measurement design, data collection, data analysis, and research conclusion.

3.1 Measurement Design
Measurement tools in this research were a student score list, the list included past student’s GPA score, past student’s CC1 score (CC1: interior architecture design concept and criteria 1), student responsibility score, assignment scores (assignment 1-8), report scores (report 1 and 2), student final examination score, and total student CC2 score. All scores were converted to be ratio scale measurement (0 to 100%).

3.2 Data Collection
The quantitative data collection, the scores were carried out with the forty-five students who had registered in the subject (during Nov. 2012- Feb. 2013). There were three parts (factors) of data collection in this research
• Student Characteristic: this part consisted of three measured variables: past student’s GPA score, past student’s CC1 score (CC1: interior architecture design concept and criteria 1, CC1 is pre-requisite of CC2), and student responsibility score during the period of study.
• Cooperative/Collaborative Learning Technique: this part consisted of ten measured variables with three patterns of assignments (individual, paired, and group assignment) as shown in Figure 2: assignment 1 to 8 and report 1 & 2 of student performance in the CC2 as shown in Table 1. All periods of the study, teaching facilities and classroom environment were controlled as the cooperative/collaborative learning technique by the researcher.
• Student Efficiency: this part consisted of two measured variables: final examination score and total score of student performance in the CC2. Because the final examination score is a final indicator of individual student efficiency while the total score is a result indicator of individual student efficiency in the CC2.
• Classroom Environment & Teaching Facilities: all periods of the study, teaching facilities and classroom environment were controlled as the cooperative/collaborative learning technique by the researcher. A classroom was selected and used for this research. Each type of classroom patterns was shown as below (Fig. 2).

3.3 Data Analysis
Statistical SEM software was used to analyse raw data gathering from the data collection. Researcher inputted the data into a personal computer by using the software for the data analysis; the data included the three parts from the data collection. An SEM was formulated graphically in the program according to the conceptual research model and its measurement variables (the scores).
Table 1: Measured Variables of Cooperative/Collaborative Learning Technique

<table>
<thead>
<tr>
<th>Factor</th>
<th>Measured Variable</th>
<th>Pattern of Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assignment 1</td>
<td>Individual</td>
</tr>
<tr>
<td></td>
<td>Assignment 2</td>
<td>Paired</td>
</tr>
<tr>
<td></td>
<td>Assignment 3</td>
<td>Paired</td>
</tr>
<tr>
<td></td>
<td>Assignment 4</td>
<td>Individual</td>
</tr>
<tr>
<td></td>
<td>Assignment 5</td>
<td>Group</td>
</tr>
<tr>
<td></td>
<td>Assignment 6</td>
<td>Group</td>
</tr>
<tr>
<td></td>
<td>Assignment 7</td>
<td>Individual</td>
</tr>
<tr>
<td></td>
<td>Assignment 8</td>
<td>Individual</td>
</tr>
<tr>
<td></td>
<td>Report 1</td>
<td>Group</td>
</tr>
<tr>
<td></td>
<td>Report 2</td>
<td>Paired</td>
</tr>
</tbody>
</table>

Remark: the paired and group assignments were arranged by mixing between low, medium, and high past academic performance (GPA) of the students.

Figure 2: Classroom Pattern for the Cooperative/Collaborative Learning Technique

4.0 Results and Discussion
The forty-five students of this research were 20 students of male and 25 students of female; the average age of all forty-five students was 20 years. To check the internal consistency of the collected data, the reliability was tested. Cronbach's Alpha had been worked out, the Cronbach's alpha values for all the constructs (factors) were above 0.8 (>0.7) and the
Cronbach’s alpha value for all the collected data was 0.828 (>0.7). After running the model in the software, the following output had been obtained. The results were shown in Figure 3. The fit of the structural path was evaluated. Results showed a fairly good fit ($I^2 = 207.28$, $df = 87$, $I^2/df = 2.38$, $p = 0.15$, RMSEA = 0.05, NFI = 0.957, IFI = 0.969, GFI = 0.964 and CFI = 0.968) of the structural model. Overall the structural equation parameter estimates provide empirical support for the entire hypothesis proposed was shown in Table 2.

![Figure 3: Structural Equation Model of Cooperative/Collaborative Learning Technique](image)

Table 2: Research Hypotheses Results of Structural Equation Modeling

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Dependent Variable (Factor)</th>
<th>Independent Variable (Factor)</th>
<th>Path Coefficient</th>
<th>P (<0.05)</th>
<th>Hypothesis Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Student Efficiency</td>
<td>Student Characteristic</td>
<td>-0.26</td>
<td>0.549</td>
<td>No</td>
</tr>
<tr>
<td>H2</td>
<td>Cooperative/Collaborative Learning Technique</td>
<td>Student Characteristic</td>
<td>0.89</td>
<td>0.004</td>
<td>Yes</td>
</tr>
<tr>
<td>H3</td>
<td>Student Efficiency</td>
<td>Cooperative/Collaborative Learning Technique</td>
<td>1.01</td>
<td>0.05</td>
<td>Yes</td>
</tr>
</tbody>
</table>

5.0 Conclusion

This research presented a model of cooperative/ collaborative learning which leads to learning efficiency of students (continued from a research topic of learning efficiency in theoretical subjects of interior architecture by cooperative/collaborative learning technique by Porntip, 2012). The researcher had formulated an SEM for explaining the factors influencing
(cause-effect) the student efficiency in the theoretical subject of the interior architecture program case study, by the three factors included student characteristics (three measurement variables), cooperative/collaborative learning technique (ten measurement variables) and student efficiency (two measurement variables). Its measurement variables were presented in the design measurement and the data collection (section 3.1 and 3.2).

The results of this research showed in statistics values that the student characteristic had no a significant direct positive effect on the student efficiency (H1 was rejected), the student characteristic had a direct positive effect on the cooperative/collaborative learning technique, and the cooperative/collaborative learning technique had a direct positive effect on the student efficiency as shown in Figure 3 and Table 2. By the results, the researcher concluded that the student characteristic had an indirect effect on the student efficiency through the cooperative/collaborative learning technique. Therefore, the cooperative/collaborative learning technique was a key important method for student efficiency in the theoretical subjects of the interior architecture programs. The final model in this research was shown in Figure 4. Collaborative/cooperative learning is an educational approach to teaching and learning that involves groups of students working together to solve a problem, complete a task, or create a product. Arranging study groups by mixing students based on past academic performance of the students would have more support to higher student efficiency especially students who have low past academic performance because they talked and shared their knowledge and experiences with each other during the group activities.

The recommendation in this research is an improvement for the teaching-learning in the theoretical subjects of the interior architecture program through the cooperative/collaborative learning technique in order to achieve the student efficiency. The instructors should provide teaching facilities and physical environment within the classroom where support to the cooperative/collaborative learning technique. Moreover, the instructors should study and know their student backgrounds (past academic performance, GPA) in order to mix the students based on the background in the paired and group assignments were arranged by mixing between low, medium, and high past academic performance (GPA) of the students. Recommendation for future research is how the student characteristics and cooperative/collaborative learning technique affect to the student efficiency in “practical subjects” in the interior architecture program through the cooperative/collaborative learning technique.

![Figure 4: Cooperative/Collaborative Learning Model](image-url)
Acknowledgement
This research was supported funding by the research project grant provided by the faculty of Architecture Urban Design and Creative Arts, Mahasarakham University, Thailand.

References

Burcin Gokkurt, Sefa Dundar, Yasin Soylu, and Levent Akgun (2012). The effects of learning together technique which is based on cooperative learning on students' achievement in mathematics class, Procedia Social and Behavioral Sciences, 46 (2012) 3431 – 3434, ScienceDirect, Elsevier Ltd.

